Source-to-source code translation from Python using AI involves utilizing natural language processing (NLP) techniques and machine learning algorithms to analyze and understand source code
Problem Description | Python Syntax Example | Elm Syntax Example | Score (1-10) |
---|---|---|---|
Dynamic Typing | x = 5 |
x : Int = 5 |
8 |
First-Class Functions | def add(x, y): return x + y |
add : Int -> Int -> Int |
6 |
List Comprehensions | [x * 2 for x in range(10)] |
List.map (\x -> x * 2) (List.range 0 9) |
7 |
Exception Handling | try: ... except ValueError: ... |
case ... of Ok value -> ... | Err err -> ... |
9 |
Mutable State | x = [1, 2, 3]; x.append(4) |
let x = [1, 2, 3] in x ++ [4] |
7 |
Object-Oriented Programming | class Dog: def bark(self): ... |
type Dog = { bark : () -> Cmd msg } |
8 |
Importing Modules | import math |
import Math exposing (pi) |
5 |
Pattern Matching | if x == 1: ... |
case x of 1 -> ... |
6 |
Higher-Order Functions | map(lambda x: x + 1, [1, 2, 3]) |
List.map (\x -> x + 1) [1, 2, 3] |
5 |
Type Inference | def func(x): return x + 1 |
func x = x + 1 |
4 |
In Python, variables can be assigned without explicit type declarations, allowing for dynamic typing:
x = 5
x = "Hello"
In Elm, types must be declared explicitly, which can lead to more robust code but requires more upfront specification:
x : Int
x = 5
x : String
x = "Hello" -- This will cause a type error
Python supports first-class functions, allowing functions to be passed as arguments:
def add(x, y):
return x + y
def apply_function(func, x, y):
return func(x, y)
result = apply_function(add, 2, 3)
In Elm, functions are also first-class citizens, but the type signatures must be defined:
add : Int -> Int -> Int
add x y = x + y
applyFunction : (Int -> Int -> Int) -> Int -> Int -> Int
applyFunction func x y = func x y
result = applyFunction add 2 3
Elm Documentation on Functions
Python allows list comprehensions for concise list creation:
squared = [x * 2 for x in range(10)]
Elm uses List.map
to achieve similar functionality:
squared = List.map (\x -> x * 2) (List.range 0 9)
Python uses try
and except
for exception handling:
try:
result = 10 / 0
except ZeroDivisionError:
result = "Cannot divide by zero"
Elm uses a Result
type for error handling:
case divide 10 0 of
Ok value -> value
Err err -> "Cannot divide by zero"
Elm Documentation on Error Handling
Python allows mutable state, enabling in-place modifications:
x = [1, 2, 3]
x.append(4)
Elm emphasizes immutability, requiring new lists to be created:
x = [1, 2, 3]
x = x ++ [4]
Python supports OOP with classes:
class Dog:
def bark(self):
return "Woof!"
Elm uses records and functions to achieve similar behavior:
type alias Dog =
{ bark : () -> Cmd msg }
bark : Dog -> Cmd msg
bark dog = dog.bark ()
Python imports modules using the import
statement:
import math
Elm imports modules with a similar syntax but with explicit exposure:
import Math exposing (pi)
Python uses if
statements for conditional logic:
if x == 1:
print("One")
Elm uses pattern matching with case
statements:
case x of
1 -> "One"
Elm Documentation on Pattern Matching
Python supports higher-order functions:
result = map(lambda x: x + 1, [1, 2, 3])
Elm uses List.map
for similar functionality:
result = List.map (\x -> x + 1) [1, 2, 3]
Python allows functions without explicit type declarations:
def func(x):
return x + 1
Elm requires type declarations for functions:
func : Int -> Int
func x = x + 1