Source-to-source code translation from Perl using AI involves utilizing natural language processing (NLP) techniques and machine learning algorithms to analyze and understand source code
Translation Problem | Perl Syntax Example | R Syntax Example | Score (1-10) |
---|---|---|---|
Variable Declaration | $var = 10; |
var <- 10 |
3 |
Regular Expressions | $string =~ /pattern/; |
grepl("pattern", string) |
5 |
Array Manipulation | @array = (1, 2, 3); |
array <- c(1, 2, 3) |
2 |
Hashes (Dictionaries) | %hash = ('key' => 'value'); |
hash <- list(key = 'value') |
4 |
Control Structures | if ($condition) { ... } |
if (condition) { ... } |
2 |
Subroutines | sub func { ... } |
func <- function() { ... } |
3 |
Object-Oriented Programming | package MyClass { ... } |
MyClass <- setRefClass("MyClass") |
6 |
Context Sensitivity | $var = 10; print $var; |
var <- 10; print(var) |
4 |
File Handling | open(FILE, "<", "file.txt"); |
file <- file("file.txt", "r") |
5 |
Exception Handling | eval { ... }; |
tryCatch({ ... }, error = function(e) { ... }) |
7 |
In Perl, variables are declared with a $
for scalars, @
for arrays, and %
for hashes. For example:
$var = 10;
In R, variables are declared using <-
or =
:
var <- 10
Reference: Perl Variable Declaration, R Variable Assignment
Perl uses the =~
operator for regex matching:
$string =~ /pattern/;
In R, the grepl
function is used for similar functionality:
grepl("pattern", string)
Reference: Perl Regular Expressions, R Regular Expressions
In Perl, arrays are defined with @
:
@array = (1, 2, 3);
In R, arrays are created using the c()
function:
array <- c(1, 2, 3)
Reference: Perl Arrays, R Vectors
Perl uses %
to define hashes:
%hash = ('key' => 'value');
In R, lists can be used to create similar structures:
hash <- list(key = 'value')
Reference: Perl Hashes, R Lists
Control structures in Perl use if
, else
, and elsif
:
if ($condition) { ... }
In R, the syntax is similar:
if (condition) { ... }
Reference: Perl Control Structures, R Control Structures
Subroutines in Perl are defined using sub
:
sub func { ... }
In R, functions are defined using the function
keyword:
func <- function() { ... }
Reference: Perl Subroutines, R Functions
Perl uses packages for OOP:
package MyClass { ... }
In R, object-oriented programming can be done using setRefClass
:
MyClass <- setRefClass("MyClass")
Perl's context sensitivity can lead to different behaviors:
$var = 10; print $var;
In R, the context is less ambiguous:
var <- 10; print(var)
Reference: Perl Context, R Print Function
In Perl, file handling is done with the open
function:
open(FILE, "<", "file.txt");
In R, file connections are created using the file
function:
file <- file("file.txt", "r")
Reference: Perl File Handling, R File Connections
Perl uses eval
for exception handling:
eval { ... };
In R, tryCatch
is used:
tryCatch({ ... }, error = function(e) { ... })
Reference: Perl Exception Handling, R Exception Handling